Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 234: 113760, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244484

RESUMEN

Recently, carbon quantum dots (CQDs) have become popular because of their simple synthesis and potential applications. Although CQDs have high biocompatibility, their biotoxicity must be verified to reduce the possible risks associated with large-scale application. In this study, the hepatotoxicity of three CQD types, namely diammonium citrate (AC)-based (CQDs-AC), spermidine trihydrochloride (Spd)-based (CQDs-Spd), and AC- and Spd-based CQDs (CQDs-AC/Spd), were evaluated in vivo and in vitro. It was observed in vivo that CQDs-Spd and CQDs-AC/Spd, but not CQDs-AC, caused histopathological damage, including liver steatosis and mild mixed inflammatory cell infiltration; however, reduced liver function was only observed in CQD-Spd-treated mice. The in vitro results revealed that only CQDs-Spd significantly decreased the number of viable HepG2 cells (NADH depletion) and induced oxidative stress (heme oxygenase-1 activation) after 24 h of exposure, which promoted inflammatory factor secretion (NF-κB activation). Additionally, decreasing zonula occludens-2 and α1-antitrypsin protein expression in HepG2 cells suggested that CQD-Spd exposure increases the risk of liver diseases. Our results revealed that CQDs-Spd had greater hepatotoxic potential than CQDs-AC and CQDs-AC/Spd, which might be attributable to their high positive surface charge. Overall, the risk of CQD-induced hepatotoxic risk must be considered when applying positively charged CQDs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Puntos Cuánticos , Ratones , Animales , Humanos , Puntos Cuánticos/toxicidad , Carbono/farmacología , Espermidina , Células Hep G2 , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
2.
Water Environ Res ; 95(10): e10930, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37746676

RESUMEN

In this study, the integration of carbon nanotube (CNT), graphene, and biochar (BC) with zinc oxide nanorods (ZnO NRs) was investigated for efficient water pollutant removal. Two types of ZnO NRs/BC hybrids (BC on top and bottom of ZnO NRs) were synthesized and compared to other carbon material-based ZnO NRs combinations. Methylene blue (MB) adsorption efficiency was evaluated for various carbon material-based ZnO NRs composites, revealing good performance in ZnO NRs/BC hybrids, particularly with BC on top. The adsorption efficiency reached an impressive 61.79% for ZnO NRs/BC, surpassing other configurations. MB removal by ZnO NRs/BC fitted well with pseudo-first-order kinetics and the rate constants of MB adsorption is 9.19 × 10-2 1/min (R2 = 0.9237). Surface characterizations revealed a distinctive distribution of BC grains, with denser aggregation observed on top of ZnO NRs. This unique distribution contributed to higher MB adsorption rates, substantiated by Fourier transform infrared spectroscopy (FTIR) analysis that showcased stronger MB adsorption in ZnO NRs/BC hybrids. Notably, the enhanced MB adsorption rates were attributed to the population of BC grains. This research establishes ZnO NRs/BC composites as promising candidates for effective water pollutant removal. The developed materials can be combined with the existed conventional wastewater treatment systems to further purify the water quality. PRACTITIONER POINTS: ZnO NRs/BC hybrids achieve a remarkable 61.79% efficiency in removing MB pollutants, surpassing other carbon materials. MB removal using BC-based materials follows pseudo-first-order kinetics. BC grains exhibit unique distribution patterns on ZnO NRs, with densely packed grains atop contributing to higher MB removal. FTIR analysis confirms increased MB-related bond vibration, supporting the effectiveness of ZnO NRs/BC hybrids for water pollutant removal.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Contaminantes Químicos del Agua , Contaminantes del Agua , Óxido de Zinc , Óxido de Zinc/química , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
3.
Chemosphere ; 333: 138954, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37201606

RESUMEN

Groundwater contamination by chlorinated solvents causes potential threats to water resources and human health. Therefore, it is important to develop effective technologies to remediate contaminated groundwater. This study uses biodegradable hydrophilic polymers, hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP) as binders to manufacture persulfate (PS) tablets for the sustained release of persulfate to treat trichloroethylene (TCE) in groundwater. The release time for different tablets decreases in the order: HPMC (8-15 days) > HEC (7-8 days) > PVP (2-5 days). The efficiency with which persulfate is released is: HPMC (73-79%) > HEC (60-72%) > PVP (12-31%). HPMC is the optimal binder for the manufacture of persulfate tablets and persulfate is released from a tablet of HPMC/PS ratio (wt/wt) of 4/3 for 15 days at a release rate of 1127 mg/day. HPMC/PS/biochar (BC) ratios (wt/wt/wt) between 1/1/0.02 and 1/1/0.0333 are suitable for PS/BC tablets. PS/BC tablets release persulfate for 9-11 days at release rates of 1243 to 1073 mg/day. The addition of too much biochar weakens the structure of the tablets, which results in a rapid release of persulfate. TCE is oxidized by a PS tablet with an efficiency of 85% and a PS/BC tablet eliminates more TCE, with a removal efficiency of 100%, due to oxidation and adsorption during the 15 days of reaction. Oxidation is the predominant mechanism for TCE elimination by a PS/BC tablet. The adsorption of TCE by BC fits well with the pseudo-second-order kinetics and the pseudo-first-order kinetics, which describes the removal of TCE by PS and PS/BC tablets. The results of this study show that a PS/BC tablet can be used in a permeable reactive barrier for long-term passive remediation of groundwater.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Humanos , Tricloroetileno/química , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Agua Subterránea/química
4.
Sci Total Environ ; 855: 158885, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36169020

RESUMEN

Tungsten trioxide (WO3)-based nanoparticles (NPs) are gaining popularity because of their exciting potential for photocatalytic applications; however, the toxic potential of WO3-based NPs remains a concern. In this study, we evaluated the toxic risk of WO3 NPs and hydrated WO3 NPs (WO3·H2O NPs) using lung cells and explored the underlying mechanism. WO3 NPs and WO3·H2O NPs significantly decreased the number of viable cells (59.5 %-85.8 % of control) and promoted apoptosis in human alveolar basal epithelial A549 cells after a 24-h exposure. Both WO3 NPs and WO3·H2O NPs reduced the expression of heme oxygenase-1 (0.15-0.33 folds of control) and superoxide dismutase 2 (0.31-0.66 folds of control) and increased reactive oxygen species production (1.4-2.6 folds of control) and 8-hydroxy-2'-deoxyguanosine accumulation (1.22-1.43 folds of control). The results showed that WO3 NPs have higher cytotoxicity and oxidative potential than WO3·H2O NPs. In addition, the WO3 NP cellular uptake rate was significantly higher than the WO3·H2O NPs uptake rate in pulmonary cells. The greater extent of oxidative adverse effects induced by WO3-based NPs appears to be related to the enhanced particle uptake. WO3 NPs and WO3·H2O NPs exposure led to the secretion of inflammatory factor interleukin 6 (1.63-3.42 folds of control). Decreases in serpin family A member 1 gene expression (0.28-0.58 folds of control) and increases in the oxidation of neutrophil elastase inhibitor (1.34-1.62 folds of control) in pulmonary cells also suggest that exposure to WO3 NPs and WO3·H2O NPs raises the risk of developing chronic obstructive pulmonary disease. Taken together, our findings indicate that the toxic risk of WO3 NPs and WO3·H2O NPs must be considered when manufacturing and applying WO3-based NPs.


Asunto(s)
Nanopartículas , Tungsteno , Humanos , Tungsteno/toxicidad , Óxidos/toxicidad , Nanopartículas/toxicidad , Células A549
5.
Chemosphere ; 295: 133906, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35143855

RESUMEN

In this study, a biodegradable binder, hydroxypropyl methyl cellulose (HPMC), was used for the first time to mix with persulfate powder for developing novel persulfate-releasing tablets to remediate trichloroethylene (TCE)-contaminated groundwater. To obtain feasible parameters for the preparation of persulfate tablets, different pressures, HPMC/tablet mass ratios, and persulfate dosages were evaluated. The results showed that the persulfate tablet released 2868 mg-persulfate/day for 12 days under the optimal manufacturing parameters of HPMC/tablet mass ratio of 0.5 and pressure of 4.90 × 108 N/m2. Persulfate diffusion and gel layer erosion were dominant mechanisms for controlling the persulfate released in water. The persulfate release time and rate can be controlled by adjusting the persulfate dosage at the optimal HPMC/tablet ratio. In the column experiment, TCE with an initial concentration of 70 mg/L reached 55% removal efficiency by the tablet, which showed that the developed tablet was capable of degrading highly concentrated TCE. The results of electron spin resonance (ESR) spectroscopy showed that both SO4-· and ·OH were responsible for the oxidation of TCE. During 150 days of incubation, the biodegrading efficiency of HPMC by microbes in soil and activated sludge was 67% and 80%, respectively, under aerobic conditions, while 58% of HPMC was removed by soil bacteria under anaerobic conditions. The results showed that persulfate tablets could be used as a passive groundwater remediation system. There is no waste generated after persulfate is completely released during groundwater remediation. The developed persulfate tablets are environmentally friendly and meet the green remediation aspect.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Agua Subterránea/química , Suelo/química , Comprimidos , Tricloroetileno/química , Contaminantes Químicos del Agua/análisis
6.
Chemosphere ; 263: 128349, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297274

RESUMEN

Biochars (BCs) are currently widely used, yet their impact on human health is mostly unknown. We generated micro-tobacco stem-pyrolysed BCs (mTBCs) at different pyrolysis temperatures and assessed pulmonary toxicity in normal human lung epithelial BEAS-2B cells. mTBCs generated at 350 °C (mTBC350) and 650 °C (mTBC650) were analysed and compared for physicochemical properties and adverse effects. Pyrolysis temperature had a significant influence on chemical composition, particle size, specific surface area and aromatic carbon structure. mTBC650 displayed a highly ordered aromatic carbon structure with smaller particle size, high surface area (20.09 m2/g) and high polycyclic aromatic hydrocarbon and metal content. This composition could promote reactive oxygen species accumulation accompanied by greater cytotoxicity, genotoxicity and epithelial barrier malfunction in cultured cells. Thus, the risk of pulmonary toxicity owing to micro-BCs (mBCs) is affected by pyrolysis temperature. Long-term exposure to mBCs produced at high temperatures may lead to or exacerbate pulmonary disease.


Asunto(s)
Nicotiana , Pirólisis , Carbón Orgánico , Calor , Humanos , Temperatura
7.
ChemMedChem ; 15(17): 1645-1651, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32338431

RESUMEN

Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808 nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Indoles/farmacología , Hierro/farmacología , Nanopartículas del Metal/química , Compuestos Organometálicos/farmacología , Fotoquimioterapia , Polímeros/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Hipertermia Inducida , Indoles/química , Rayos Infrarrojos , Hierro/química , Células MCF-7 , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Tamaño de la Partícula , Polímeros/química , Relación Estructura-Actividad , Propiedades de Superficie , Células Tumorales Cultivadas
8.
PLoS One ; 15(1): e0227838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31968011

RESUMEN

Prednisolone is involved in glucose homeostasis and has been used for treatment for aristolochic acid (AA) nephropathy (AAN), but its effect on glycolysis in kidney has not yet been clarified. This study aims to investigate the effect in terms of altered proteins after prednisolone treatment in a mice model of AAN using a proteomics technique. The six-week C3H/He female mice were administrated AA (0.5 mg/kg/day) for 56 days. AA+P group mice were then given prednisolone (2 mg/kg/day) via oral gavage for the next 14 days, and AA group mice were fed water instead. The tubulointerstitial damage was improved after prednisolone treatment comparing to that of AA group. Kidney homogenates were harvested to perform the proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method (FD-LC-MS/MS). On the other hand, urinary methylglyoxal and D-lactate levels were determined by high performance liquid chromatography with fluorescence detection. There were 47 altered peaks and 39 corresponding proteins on day 14 among the groups, and the glycolysis-related proteins, especially glyoxalase 1 (GLO1), fructose-bisphosphate aldolase B (aldolase B), and triosephosphate isomerase (TPI), decreased in the AA+P group. Meanwhile, prednisolone decreased the urinary amount of methylglyoxal (AA+P: 2.004 ± 0.301 µg vs. AA: 2.741 ± 0.630 µg, p < 0.05), which was accompanied with decrease in urinary amount of D-lactate (AA+P: 54.07 ± 5.45 µmol vs. AA: 86.09 ± 8.44 µmol, p < 0.05). Prednisolone thus alleviated inflammation and interstitial renal fibrosis. The renal protective mechanism might be associated with down-regulation of GLO1 via reducing the contents of methylglyoxal derived from glycolysis. With the aid of proteomics analysis and the determination of methylglyoxal and its metabolite-D-lactate, we have demonstrated for the first time the biochemical efficacy of prednisolone, and urinary methylglyoxal and its metabolite-D-lactate might be potential biomarkers for AAN.


Asunto(s)
Ácidos Aristolóquicos/genética , Enfermedades Renales/tratamiento farmacológico , Prednisolona/farmacología , Proteómica , Animales , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Femenino , Fibrosis/tratamiento farmacológico , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/orina , Fructosa-Bifosfato Aldolasa/genética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Inflamación/orina , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/orina , Ácido Láctico/orina , Lactoilglutatión Liasa/genética , Ratones , Piruvaldehído/orina , Espectrometría de Masas en Tándem , Triosa-Fosfato Isomerasa/genética
9.
J Hazard Mater ; 385: 121575, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31727530

RESUMEN

Microplastics (MPs) have become a global environmental concern. Recent studies have shown that MPs, of which the predominant type is often polystyrene (PS; known as PS-MPs), can extend to and affect remote, sparsely inhabited areas via atmospheric transport. Although exposure to inhaled MPs may induce lung dysfunction, further experimental verification of the pulmonary toxic potential of MPs and the mechanism underlying the toxicity is needed. Here we used normal human lung epithelial BEAS-2B cells to clarify the association between pulmonary toxicity and PS-MPs. Results revealed that PS-MPs can cause cytotoxic and inflammatory effects in BEAS-2B cells by inducing reactive oxygen species formation. PS-MPs can decrease transepithelial electrical resistance by depleting zonula occludens proteins. Indeed, decreased α1-antitrypsin levels in BEAS-2B cells suggest that exposure to PS-MPs increases the risk for chronic obstructive pulmonary disease, and high concentrations of PS-MPs can induce these adverse responses. While low PS-MP levels can only disrupt the protective pulmonary barrier, they may also increase the risk for lung disease. Collectively, our findings indicate that PS-MP inhalation may influence human respiratory health.


Asunto(s)
Pulmón/efectos de los fármacos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Línea Celular , Humanos , Técnicas In Vitro , Inflamación/metabolismo , Exposición por Inhalación , Pulmón/citología , Pulmón/metabolismo , Microplásticos/química , Estrés Oxidativo , Poliestirenos/química
10.
J Hazard Mater ; 178(1-3): 123-9, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20122802

RESUMEN

Previous fire safety studies have demonstrated that flashover can result in severe injure and death and heat radiating back to a fuel is an important mechanism. Fuel sootiness dominates in radiative heat transfer. However, empirical correlations from previous investigations did not consider the fuel sootiness but nevertheless generated reasonably good predictions of flashover. In this study, a series of experiments was employed to examine fuel sootiness effects on flashover. The fuels used, in the order of their sootiness, were gasoline, n-hexane, iso-propanol and methanol. These fuels were filled in circular pans 100-320 mm in diameter to generate fires with different heat release rates and levels of sootiness. The pans were in 1/3 the size of the ISO 9705 test chamber. After ignition, the heat release rate (HRR), temperature inside the chamber, as well as heat flux on the floor and time to flashover (t(fo)) were determined. Experimental data show that HRR at flashover and t(fo) were strongly corrected and their relationship was independent of the fuel burned. Although heat feedback to the floor increased as fuel sootiness increased, consequently enhancing the burning of sooty fuels, flashover occurs only when the HRR at flashover criterion is reached.


Asunto(s)
Incendios , Hollín/análisis , 2-Propanol , Algoritmos , Gasolina , Hexanos , Cinética , Metanol , Modelos Estadísticos , Humo/análisis , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...